Elliptic equations with surface measures

Marius Müller

December 2022

Abstract

In 1812, S. D. Poisson has examined how electric charges generate an electric field \vec{E} . This is how the famous *Poisson equation* $-\Delta u = f$ came into mathematics. The electric field is computed via $\vec{E} = \nabla u$.

Poisson assumed that the electric charges lie on a 3D-object (a *charge carrier*) and the field lines spread into a 3D-domain. If the charge carrier is however very thin, one might as well want to look at it as a 2-dimensional surface $\Gamma \subset \mathbb{R}^3$.

While 3D-charge carriers can be modeled by a function f, the 2D-setting gives rise to (Hausdorff) measures, leading to the equation $-\Delta u = \mathcal{H}^2 \sqcup \Gamma$, which we will explain.

The questions we examine is whether in this setting the electric field $\vec{E} = \nabla u$ is bounded/continuous close to the charge carrier Γ . The answers depend highly on the geometry of Γ .

Mathematically, this question is thought of as a question of *regularity* for a *PDE involving measures*.